

www.2CWP.com and www.WINTERBROSE.com

All contents, including graphic images and source code, © 2008-2010 RoLoW, All Rights Reserved.

© 2008-2010, RoLoW.

All rights reserved.

www.2CWP.com and www.WINTERBROSE.com

All contents, including graphic images and source code, © 2008-2010 RoLoW, All Rights Reserved.

COPYRIGHT NOTICE

All content supplied in this book or downloaded from the internet is

supplied with the permission of the original creator/artist and is
Copyrighted Material. It is illegal to claim any portion of this work as

your own. You may not redistribute content, in whole or in part, without

the express written consent of the creator/artist. You may not use any

of this content in a commercial or educational product without the prior
written permission from the publisher. This document may not be

reproduced or redistributed by any means without specific written

permission from the publisher. This document may not be reproduced or

redistributed for any commercial or educational purpose without specific

written permission from the publisher.

This document and support files produced and distributed exclusively by:

www.2CWP.com
and

www.WINTERBROSE.com

DISCLAIMER

The content is supplied "AS IS". The author and 2CWP disclaim all
warranties, expressed or implied, including, without limitation, the

warranties of merchantability and of fitness for any purpose. The user

must assume the entire risk of using the content. Any effect that this

document, the information contained therein, or the use thereof is the
sole responsibility of the user. Use it at your own risk.

End User License Agreement
(EULA)

By using/downloading this book and/or support files, the user agrees to
all the terms and conditions set out above as well as any included with

this book/downloadable content, and all applicable copyright laws. If

legally obtained, this document may be printed/stored for an individual’s

personal non-commercial use only. Any other use requires written
authorization from the author, distributor listed above or copyright owner

www.2CWP.com and www.WINTERBROSE.com

All contents, including graphic images and source code, © 2008-2010 RoLoW, All Rights Reserved.

Rotating Images

When you are using graphics in your programs, sometimes you want to display an image

at different angles. For instance, when using an overhead view of a racing car, you may want a

picture of the car going left, right, up and down. Let’s start with the car below.

car_left.bmp

Instead of using another program like Paint to create a new image of the car for each of

the other directions in four separate pictures, we can simply load the original image into our

program and let RotateImage create the other three pictures for us. The first picture is our

original image that we had drawn of the car as a 64x64 pixel size image.

 LEFT UP RIGHT DOWN

How did we do that? First draw your image with Paint or some other graphics drawing

utility, save the file with a name you can remember and as a file type of BMP (bitmapped). Now

write your program to load your original picture and create its rotated images into an array. To

make this happen you will also use the LoadImage and CopyImage commands. Then use the

DrawImage command to display your new images. Here is the source code for the car demo.

;Rotating_Images_1.bb

Graphics 800,600

AutoMidHandle True

Dim car (4)

Global rotation#

car(0)=LoadImage("car_left.bmp")

For i = 1 To 3

 temppic = LoadImage("car_left.bmp")

 rotation = i * 90

 RotateImage temppic,rotation

 car(i) = CopyImage(temppic)

Next

For j=0 To 3

 DrawImage(car(j),(j+1)*64+10,50)

Next

Text 80,100,"Press any key to exit."

WaitKey()

www.2CWP.com and www.WINTERBROSE.com

All contents, including graphic images and source code, © 2008-2010 RoLoW, All Rights Reserved.

You don’t have to start with your image pointing to the left. Take a look at this flying aircraft

image shown moving in 8 directions using 45 degree increments. The original image points to

the upper right. You can see that the programming changed very little to get more rotated

images. We’ve taken the liberty to use compass directions for each direction (N-North, S-South,

E-East, and W-West).

 NE E SE S SW W NW N

;Rotating_Images_2.bb

Graphics 800,600

AutoMidHandle True

Dim aircraft (8)

Global rotation#

aircraft(0)=LoadImage("Jet_UpRight.bmp")

For i = 1 To 7

 temppic = LoadImage("Jet_UpRight.bmp")

 rotation = i * 45

 RotateImage temppic,rotation

 aircraft(i) = CopyImage(temppic)

Next

For j=0 To 7

 DrawImage(aircraft(j),(j+1)*64+10,50)

Next

Text 215,100,"Press any key to exit."

WaitKey()

NOTE: Because the RotateImage command is complex and timely on a large

scale of usage, you should load and create all your rotated images at the

beginning of your programs instead of during the action or events you are

using the rotated images for in your program.

You can combine your images to create nicer looking and more functional programs.

When you are drawing your images, make sure that you use the color BLACK for areas of your

picture that will be transparent. That is, these are areas that need to let images drawn behind or

drawn first on the screen to show through. A window for instance needs to let you see anything

that was drawn behind it through its glass. Because of this use of the color Black for

transparency, use a color like DARK GREY in place of Black for outlining and shading your

images. For example, to create a clock we could draw a background clock faceplate that never

rotates and use it with an hour-hand that rotates because the time changes every hour. Trust me

this works.

 Clock Faceplate Hour-hand

www.2CWP.com and www.WINTERBROSE.com

All contents, including graphic images and source code, © 2008-2010 RoLoW, All Rights Reserved.

Now we’ll show you how to create the Hour-hands for a clock. You don’t have to start with the

clock hands pointing up, but it’s just easier because that’s what seems more natural for time. In

this example we show a clock face with the hour-hand drawn over it. Take a close look at the

source code below to see how we drew our rotating hour-hand over the stationary clock face.

The same technique can be used for the Minute/Second hands of a clock.

;Rotating_Images3.bb

Graphics 800,600

AutoMidHandle True

Dim hour (12)

Global rotation#

back=LoadImage("clockface.bmp")

hour(0)=LoadImage("hourhand.bmp")

For i = 1 To 12

 temppic = LoadImage("hourhand.bmp")

 rotation = i * 30

 RotateImage temppic,rotation

 hour(i) = CopyImage(temppic)

Next

For j=1 To 12

 DrawImage(back,(j)*64,50)

 DrawImage(hour(j),(j)*64,50)

Next

Text 325,100,"Press any key to exit."

WaitKey()

You can rotate your images in any degree increment you choose, meaning that you can

use 1-degree increments for 360 directions. The greater number of directions will mostly be

used for intense things like navigational or astronomy programs; however you should experiment

to find out exactly what you need. This quick chart can help you to determine what degree

setting to use for your program.

 Number of Degrees Change Example

 Directions for RotateImage Uses .

 2 180 Up and down on screen

 or left and right on screen

 4 90 North, South, East and West

 8 45 Low-level moving objects

 12 30 Hour-hand on clock

 16 22.5 Medium-level moving objects

 32 11.25 High-level moving objects

 60 6 Minute/Second-hand on clock

www.2CWP.com and www.WINTERBROSE.com

All contents, including graphic images and source code, © 2008-2010 RoLoW, All Rights Reserved.

Did you notice the AutoMidHandle function? This function allows you to control where

the pivot point for rotating an image will be. TRUE sets rotation on the middle-most pixel of the

image. FALSE sets rotation on the pixel at position 0,0 or the upper-left most pixel of the image.

Look at these two examples showing both uses of the AutoMidHandle function for a simulated

magnetic compass.

 Background Arrow

Here we rotate the arrow with AutoMidHandle set to TRUE.

Here we rotate the arrow with AutoMidHandle set to FALSE.

You can see how the arrow rotates the way we originally desired by setting AutoMidHandle to

True as shown below.

